DG20.IRبهترینها؛برق،مکانیک،ساختمان،تکنولوژی،مدیریت،زبان

DG20.IRبهترینها؛برق،مکانیک،ساختمان،تکنولوژی،مدیریت،زبان

مطالبی در زمینه برق ،مکانیک ،کامپیوتر ،معماری ،کنترل ،الکترونیک ، مخابرات،ابزار دقیق ،هوش مصنوعی ، روباتیک، فتونیک، اویونیکAvionic ،فیزیک ،ساختمان ، تاسیسات، تکنولوژی جدید، موبایل ،مدیریت و کارآفرینی، آموزش زبان و مطالعه،خواندنی های اینترنت و انرژی مثبت
DG20.IRبهترینها؛برق،مکانیک،ساختمان،تکنولوژی،مدیریت،زبان

DG20.IRبهترینها؛برق،مکانیک،ساختمان،تکنولوژی،مدیریت،زبان

مطالبی در زمینه برق ،مکانیک ،کامپیوتر ،معماری ،کنترل ،الکترونیک ، مخابرات،ابزار دقیق ،هوش مصنوعی ، روباتیک، فتونیک، اویونیکAvionic ،فیزیک ،ساختمان ، تاسیسات، تکنولوژی جدید، موبایل ،مدیریت و کارآفرینی، آموزش زبان و مطالعه،خواندنی های اینترنت و انرژی مثبت

اشنایی با سیستمهای سوخت رسانی کاربراتوری و انژکتوری:

سیستم سوخت رسانی برای خودرو به مانند دستگاه گوارش و دستگاه تنفسی برای بدن انسان ضروری و بسیار حساس است که بایستی انرژی لازم برای استفاده و کار خودرو را فراهم سازد . اما این سیستم های سوخت رسانی چگونه چنین کاری را انجام میدهند ؟ بر چند نوع هستند ؟ مزایا و معایب این نوع سیستم ها چیست ؟ چه نوع سیستمی برای خودرو اقتصادی تر و مناسب تر است ؟ و . . . ده ها سئوال دیگر که ممکن است برای همه ی کسانی که به نوعی با خودرو سر و کار دارند پیش آید . از سال 1383 ساخت خودرو های سواری کاربراتوری تقریبا به حالت تعلیق در آمده است و شرکت ها تنها مجازند از سیستم های انژکتوری برای محصولات خود استفاده کنند . حال آنکه تعدادی از رانندگان قدیمی خودرو همچنان بر استفاده از خودروهای کاربراتوری اصرار می ورزند . اصلا کاربراتور و انژکتور چه تفاوتی با هم دارند ؟ چه کاری انجام می دهند ؟ و کدامیک بر دیگری ارجحیت دارد ؟ و . . . سئوالات مشابه دیگر . در این نوشتار سعی داریم به صورت اختصار با هر دو نوع سیستم سوخت رسانی آشنا شویم و در نهایت با مزایا و معایب هر دو آشنایی پیدا کرده تا بتوانیم به درستی در خصوص استفاده از این سیستم ها در خودرو تصمیم گیری نماییم .

کاربراتور چیست ؟
کاربراتور مهمترین قطعه در سیستم های سوخت رسانی کاربراتوری است . وظیفه ی اصلی کاربراتور تهیه مخلوط مناسبی از هوا و سوخت برای شرایط مختلف کار موتور می باشد . یک کاربراتور بایستی خواسته های زیر را برآورده سازد :

1 . تهیه مخلوط صحیح هوا و سوخت برای شرایط مختلف کار موتور در زمانی بسیارکوتاه

2 . مصرف کم سوخت در وضعیت کار عادی موتور

3 . امکان تامین حداکثر قدرت در حالت بار کامل

4 . روشن شدن موتور در هر درجه حرارت و کارکرد منظم آن در حالت دور آرام

5 . پایداری تنظیم های انجام یافته بر روی کاربراتور برای یک مدت طولانی و امکان تنظیم ها با توجه به شرایط کاری موتور

6 . سادگی ، قابلیت اطمینان و دوام

7 . سهولت تعمیر و نگهداری

کاربراتور چگونه کار می کند ؟
عامل اصلی کار کاربراتور ایجاد مکش ( خلاء ) در روی مجرای خروج سوخت ( ژیگلور ) می باشد .این کار توسط قسمتی از بدنه کاربراتور به نام ونتوری یا گلوگاه انجام می گیرد . ونتوری در حقیقت مقطع کاهش بدنه کاربراتور می باشد . با باز شدن صفحه گاز هوا توسط سیلندر موتور مکیده شده و به داخل کاربراتور جریان می یابد . در هنگام عبور از ونتوری به علت کاهش مقطع عبور ، سرعت هوا افزایش یافته و فشار محفظه ونتوری کاهش می یابد و مکشی ایجاد می نماید که به مراتب از سایر مقاطع کاربراتور بیشتر است . بنابراین چنانچه مجرای سوخت به این قیمت متصل شود ، سوخت مکیده شده و پس از مخلوط شدن با هوا به داخل سیلندر وارد می شود .

انواع کاربراتور : کاربراتور ها از نظر جریان هوا به سه دسته تقسیم می شوند :

1 . کاربراتور با جریان هوا از بالا به پایین : در این کاربراتور نیروی جاذبه به جریان مخلوط سوخت و هوا به داخل موتور کمک می کند و در نتیجه تغذیه موتور بهتر انجام میشود . علاوه بر آن دسترسی به کاربراتور از نظر فضای تعمیراتی نیز بهتر می باشد . به همین دلیل این نوع کاربراتور برروی اکثر خودروها به کار می رود که می توانند شامل کاربراتورهای یک مرحله ای یا دو مرحله ای باشند . کاربراتور خودروهای نیسان ، پراید ، پژو از این نوع می باشند  .

2 . کاربراتور با جریان هوا از پایین به بالا : این نوع کاربراتور بیشتر در گذشته به کار گرفته می شده است و علت آن جلوگیری از ورود سوخت به صورت مایع به موتور بود . در حال حاضر با توجه به اینکه این کاربراتور از نظر فضای تعمیراتی از قابلیت دسترسی خوبی برخوردار نیست و علاوه برآن روشن شدن موتور در هوای سرد نیز به خوبی انجام نمی شود ، کاربردی ندارد . کاربراتور خودروهای قدیمی دهه ی 60 19 معمولا از این نوع می باشد .

3 . کاربراتور با جریان هوای افقی : مزیت اصلی این نوع کاربراتور ارتفاع کمی است که درزیر درپوش موتوراشغال می کند . این نوع کاربراتور می تواند دارای ونتوری ثابت یا متغیر باشد . کاربراتور خودرو پیکان از نوع کاربراتور با جریان هوای افقی و با ونتوری متغیر می باشد .

کاربراتورها عموما از قسمت های زیر تشکیل شده اند :

محفظه ی گاز – محفظه ی ساسات – بدنه – محفظه راه انداز – پمپ شتابدهنده که ونتوری در کاربراتورهای یک مرحله ای یا ونتوری ها در انواع دو مرحله ای در بدنه اصلی جای می گیرند . صفحه گاز در محفظه ی گاز و صفحه ی ساسات در محفظه ی ساسات قرار دارند . محفظه ی راه انداز و پمپ شتابدهنده نیز در کاربراتورهای پیشرفته برای جبران بعضی کاستی های کاربراتور های اولیه طراحی و استفاده می شوند .

تا دهه 1960 کاربراتور در بسیاری از سیستم های سوخت رسانی استاندارد مورد استفاده قرار می گرفت . در دهه 1970 در طی تحقیقات و نوآوری هایی سیستم  EFI   که در آن سوخت توسط انژکتورها  با کنترل الکترونیکی به مجرای مکش تزریق می گردید به جای کاربراتور در نظر گرفته شد .

باید بدانیم که وجود چه معایبی از سیستم های کاربراتوری موجب شده تا با کنار گذاشتن آن سیستم انژکتوری را جایگزین آن نماییم . دو جزء اساسی سیستم های کاربراتوری کاربراتور و دلکو می باشند .

کاربراتور ها دو وظیفه اصلی به عهده دارند :

1 . مخلوط کردن سوخت و هوا به نسبت ترکیبی مشخص که در هر کاربراتور به عنوان یک پارامتر اساسی تعیین می شود .

2 . توزیع سوخت پودر شده به میزان برابر بین سیلندرها .

دلکو نیز دو وظیفه اصلی به عهده دارد :

1 . تولید برق مبتنی بر مکانیزم کارکرد پلاتین و فیوز ( خازن ‌) دلکو .

2 . توزیع برق در روی سر شمع ها در زمان لازم .

معایب عمده و ذاتی کاربراتور :

با دقت در انجام کار کاربراتور می توان دید علی رغم تمام محاسنی که کاربراتور برای خودرو دارد چند عیب ذاتی بزرگ دارد که چشم پوشی از آنها امکان پذیر نیست از جمله

1 . عدم تناسب میزان مخلوط شدن هوا و سوخت : این میزان ثابت نبوده و به دلیل چگالی نامتناسب این دو ماده که یکی گازی و دیگری مایع است تنها در یک زاویه خاص از دریچه کاربراتور این نسبت رعایت شده و در بقیه موارد این تناسب به هم می خورد .

2 . کاربراتور شدیدا وابسته به شرایط محیط است : وابستگی شدید کاربراتور به شرایط محیط به خصوص دما و فشار باعث می شود که به جرات بتوان گفت هیچ خودرو کاربراتوری در حالت تنظیم کامل کار نمی کند .زمانی که یک خودرو کاربراتوری را تنظیم می کنید نا خودآگاه این تنظیم را بگونه ای انجام خواهید داد که فقط و فقط خودرو در همان ساعت و همان مکان تنظیم باشد و به محض تغییر محل یا تغییر ساعت ، خودرو از تنظیم خارج می شود . احتمالا شما در هنگام رانندگی از شهری مانند تهران به شهری دیگر مانند رشت این تغییر رفتار محسوس کاربراتور و بد روشن شدن و تنظیم نبودن خودرو را یا به طور کلی بد روشن شدن خودروهای کاربراتوری در هنگام زمستان و یا صبح زود تجربه کرده اید .

3 . عدم توزیع یکسان سوخت به سیلندرها : از آنجایی که کاربراتور وظیفه انتقال یک سیال را به سیلندرها به عهده دارد و این انتقال بدون هیچ دخالتی انجام می شود طبیعی است که به سیلندرهایی که به کاربراتور نزدیکترند سوخت بیشتری منتقل شده و بازده آنها بیش از سیلندرهای دورتر به کاربراتور می باشد . این موضوع باعث ایجاد یک نوع عدم بالانسینگ موتور می شود که در صورت استفاده از کاربراتور اجتناب ناپذیر است .

4 . خفه کردن کاربراتور : این مشکل  در کلیه کاربراتورهایی که واحد پمپ شتابدهنده دارند دیده می شود که در زمان خاموشی موتور با چند بار فشردن پدال مقداری سوخت وارد سیلندر می شود و کاربراتور فلوت می کند . در حالی که این موضوع در خودروهای انژکتوری اصلا مصداق ندارد .

5 . پدیده قفل گازی : این پدیده پس از خاموش کردن موتور رخ می دهد . وقتی که موتور و متعاقب آن پمپ بنزین خاموش می شود بنزینی که در لوله ها و کاربراتور موجود است بر اثر از دست دادن حرکت خود و نیز همنشینی با گرمای موتور بخار شده و باعث دیر روشن شدن خودروهای کاربراتوری پس از چند لحظه خاموش شدن می شوند .این پدیده در خودروهای انژکتوری نیز اتفاق می افتد اما بلافاصله پس از باز کردن سوئیچ با کارکرد پمپ بنزین قبل از روشن شدن موتور این موضوع منتفی می شود .

6 . وابسته بودن به نوع بنزین  : اصولا یکی از پارامترهای کیفی بنزین عدد اکتان است . این عدد بدون واحد در واقع معیاری است که به نوعی می تواند به ما نشان دهد که تا چه حد می توانیم بنزین را تحت فشار قرار دهیم بدون آنکه بنزین دچار خودسوزی و انفجار شود .هر چه عدد مزبور به عدد 100 نزدیکتر باشد کیفیت بنزین مصرفی به اصطلاح بهتر خواهد بود .طبیعتا در لحظه تنظیم موتور این کار با استفاده از بنزین مشخصی صورت می گیرد . حال اگر نوع بنزین و در نتیجه عدد اکتان آن تغییر کند نیازمند تنظیم جدیدی خواهیم بود .اکثر کسانی که از بنزین معمولی در خودرو کاربراتوری خود استفاده می کنند پس از استفاده از بنزین سوپر شاهد این تفاوت کارکرد موتور می شوند .

7 . تنظیمات زیاد و پیچیدگی زیاد مکانیکی : موجب می شود که تعمیر کاران اغلب به دلیل عدم آگاهی از تنظیمات دقیق و یا عدم استفاده از ابزار مخصوص های لازم نسبت به تنظیم همه جانبه آن غفلت ورزیده و این خود مزید بر علت می شود علاوه بر این باعث خرابی های زودرس نیز خواهد بود .

معایب عمده ذاتی دلکو :

1 . شدت جرقه به دور موتور وابسته است : تولید برق در خودرو به دلیل مکانیزم خاص عملکردی پلاتین و خازن دلکوست . در یک کویل ساده در زمانی که پلاتین بسته است جریان از مسیر کویل اولیه و پلاتین عبور کرده و به بدنه می رسد . این عمل موجب شارژ شدن جریانی سیم پیچ اولیه می شود . اصولا سیم پیچ ها دارای خاصیت مشابهی با خازن ها هستند با این تفاوت که خازن ها با تغییرات ولتاژ مخالفت کرده و در زمان افت ولتاژ شبکه با دادن ولتاژخود باعث ثابت ماندن آن در سیتم شده اما سیم پیچ ها دارای این ویژگی هستند که سعی دارند با دادن جریان اضافی مقدار جریان عبوری از خود را ثابت نگه دارند .

تا زمانی که پلاتین بسته است هیچ اتفاقی نمی افتد . به محض باز شدن پلاتین سیم پیچ که سعی دارد جریان خود را ثابت نگه دارد به اجبار جریان خود را به خازن هدایت می کند . خازن وقتی در این حالت قرار می گیرد ولتاژ روی آن به شدت افزایش یافته و حتی به بالای 300 ولت نیز میرسد . این شدت موجب می شود که جریان تغییر مسیر داده و به سیم پیچ برگردد . این تغییر جریان تا شارژ مجدد سیم پیچ ادامه داشته و دوباره جهت جریان بین سیم پیچ و خازن تغییر می کند . تا زمانی که پلاتین باز است این نوسان بارها انجام شده که نتیجه آن تغییر شار مغناطیسی و تحریک سیم پیچ ثانویه و ایجاد جرقه برروی شمع ها است . در هر بار باز شدن پلاتین این عمل تکرار می شود .در این حالت موتور در دور آرام  هیچ مشکلی عملکردی ندارد اما با افزایش دور موتور زمان بسته شدن پلاتین ناخودآگاه کوتاه شده و عمل شارژ و دشارژ کویل خارج از بازه زمانی باز و بسته شدن پلاتین قرار می گیرد . اینجاست که عیب بزرگ سیستم جرقه زنی دلکو ظاهر می شود . کویل به دنبال پلاتین چون زمان کافی برای شارژ و دشارژ سیم پیچ اولیه ندارد نمی تواند شار لازم برای تحریک کامل سیم پیچ ثانویه را به دست آورد و لذا شدت جرقه در دورهای بالاتر به طور محسوسی کاهش یافته و خودرو در دور بالا دچار لرزش زیاد کاهش راندمان موتور و افزایش مصرف بنزین به صورت تصاعدی می شود .

2 . شدت توزیع جرقه بر روی سر شمع ها یکسان نیست : مسئله وجود وایر شمع ها و مشکلات آن همیشه یک معضل بوده است . اما مشکل عمده آن مسئله نا هماهنگ بودن طول وایرهاست که موجب نا موزونی شدت جرقه در سر شمع ها می شود .

3 . عدم تناسب آوانس های دینامیکی و استاتیکی :

الف ) آوانس استاتیکی که با حرکت دادن موضعی دلکو ایجاد شده و توسط فرد تنظیم می شود .

ب ) آوانس دینامیکی که شامل آوانس های خلائی و وزنه ای هستند که به طور اتوماتیک توسط دلکو تنظیم می شوند . آوانس استاتیکی با توجه به دخالت دست همیشه دقیق تنظیم نمی شود و از طرفی به آوانس خلایی نیز نمی توان اطمینان داشت زیرا با هر بار فشردن و یا رها کردن گاز خلاء  منیفولد کم و زیاد شده و آوانس خودرو به هم میریزد و از جانب دیگر آوانس وزنه ای نیز با توجه به اتکا بر نیروی گریز از مر کز و خاصیت غیر خطی فنر وزنه ها معمولا مقدار مناسبی را به دست نمی دهد . تمامی این عوامل دست به دست هم می دهند تا آوانس دلکو هرگز تنظیم قابل قبولی ارائه ندهد .

4 . تنظیمات زیاد و پیچیدگی زیاد مکانیکی : موجب می شود که تعمیر کاران اغلب به دلیل عدم آگاهی از تنظیمات دقیق و یا عدم داشتن ابزار مخصوص های لازم نسبت به تنظیم های همه جانبه آن غفلت ورزیده و این خود مزید بر علت می شود علاوه بر این باعث خرابی های زودرس نیز خواهد بود .

سیستم تزریق سوخت الکترونیکی EFI  چیست ؟

اتومبیل ها یکی از دو سیستم کاربراتوری یا انژکتوری را برای تحویل مخلوط سوخت و هوا با نسبت صحیح به سیلندرها در تمام دامنه های سرعت دورانی موتور مورد استفاده قرار می دهند . هر یک از این دو سیستم حجم هوای مکش را اندازه گیری می کند . حجم هوای مکش بر اساس زاویه دریچه گاز و سرعت موتور تغییر می کند و هر دو سیستم نسبت سوخت و هوای صحیح را برای تمام سیلندرها بر اساس حجم هوای مکش تامین می کنند .

به دلیل اینکه ساخت کاربراتور نسبتا ساده است ونیازی به قطعات با تکنولوژی بالا ندارد در سطح وسیعی از موتورهای بنزینی مورد استفاده قرار گرفته است . در پاسخ به نیاز های فعلی برای کاهش آلودگی دود خروجی از اگزوز ‏، مصرف سوخت اقتصادی ، سوخت رسانی بهینه و سایر موارد دیگر ، کاربراتورهای امروزی باید به وسیله  جبران سازهای مختلف مجهز گردند که باعث به وجود آمدن کاربراتور با سیستم پیچیده تر می گردد . برای اطمینان از نسبت سوخت و هوای صحیح در موتور سیستم EFI  بر اساس شرایط رانندگی مختلف به جای کاربراتور مورد استفاده قرار گرفت .

سیستم کنترل EFI  در دو نوع آنالوگ و دیجیتال برای سوخت رسانی به کار می رود . در سیستم کنترل از نوع آنالوگ حجم سوخت تزریق شده بر اساس زمان مورد نیاز برای شارژ و دشارژ کردن خازن کنترل می شود و لیکن در سیستم کامپیوتری حجم سوخت تزریق شده بر اساس داده های ذخیره شده در حافظه مشخص می گردد  علاوه بر کنترل زمان مقدار سوخت تزریق شده آوانس جرقه کنترل سرعت هرزگرد موتور کارکرد نادرست موتور و سایر موارد نیز می تواند بوسیله ی سیستم کامپیوتری کنترل گردد .

تفاوت عمده سیستم های انژکتوری در موتورهای بنزینی و گازوئیلی :

در سیستم های انژکتوری موتورهای گازوئیل سوز از سیستم جرقه زنی و شمع خبری نیست و در حقیقت احتراق درون محفظه ی سیلندر به روش احتراق خود به خودی یا Self Ignition  انجام می شود بدین صورت که ابتدا هوا در مرحله تنفس وارد محفظه ی سیلندر شده و در مرحله تراکم تا میزان حتی 1 به 25 متراکم می شود در این حالت دمای هوا تا حدود 700  درجه سانتی گراد افزایش می یابد . سپس در بالاترین نقطه و در زمان مناسب گازوئیل توسط انژکتورها به درون سیلندر پاشش می شود که در حضور هوای داغ باعث انفجار می گردد و منجر به حرکت در آوردن پیستون و در نهایت حرکت موتور می شود .

اما در موتورهای بنزین سوز در مرحله تنفس مخلوط سوخت و هوا وارد سیلندر می شود و همچنان انفجار سوخت در محفظه ی احتراق به کمک جرقه حاصل از فرمان رسیده به شمع ها صورت می گیرد و این نسبت تراکم تا حداکثر حدود 1 به 11 امکان پذیر می باشد و در صورت انفجار بی موقع سوخت درون سیلندر پدیده Knocking  یا Detonation  روی داده و باعث وارد آمدن آسیب جدی به موتور خودرو می شود . که این امر توسط ECU  کنترل می گردد .

وظیفه ای را که کاربراتور در سیستم سوخت رسانی کاربراتوری به عهده دارد در سیستم های انژکتوری به عهده 2 سیستم سوخت رسانی و سیستم هوارسانی گذاشته شده است که بوسیله واحد کنترل الکترونیکی Electronic Control Unit   هدایت می شوند .

سیستم سوخت رسانی شامل : باک بنزین –Fuel Tank پمپ بنزین Fuel Pump – لوله ای انتقال سوخت  Fuel Pipe – فیلتر بنزین Fuel Filter – رگولاتور فشار Pressure Regulator  –  ریل توزیع کننده سوخت  Delivery Pipe Fuel Rail - انژکتورهای مستقر بروی ریل سوخت Injectors و تعدیل کننده جریان ( دامپر ) Damper می باشد .

سیستم هوارسانی نیز شامل : فیلتر هوا Air Filter –  اندازه گیر جریان هوا Air Flow Meter – دریچه هوا  ‏Throttle Body – سیلندر Cylan. – منیفولد هوا  I.Manifold – مخزن آرامش  Surge Tank می باشد .

در حقیقت سیستم سوخت رسانی وظیفه ای تهیه سوخت مورد نیاز در زمان مشخص و مقدار مناسب برای محفظه احتراق ( سیلندر ) و سیستم هوارسانی نیز وظیفه ای تهیه هوای مورد نیاز در زمان مشخص و مقدار و دمای مناسب برای محفظه احتراق ( سیلندر ) را به عهده دارند که به کمک سنسور های مختلف موجود در مسیر شرایط لحظه به لحظه کارکرد موتور خودرو را اندازه گیری کرده و پس از انتقال به ECU  فرمان مناسب را گرفته و به کمک فرمانبر های مختلف بهینه ترین سوخت را برای کارکرد موتور تدارک می بینند  . فرمان زمان جرقه زنی شمع ها نیز توسط ECU  صادر می شود .

اگر سیستم سوخت رسانی را به بدن انسان تشبیه کنیم ECU یه عنوان مغز سیستم ، Sensorsسنسورها به عنوان حواس انسان ( بینایی و . . .  ) و Actuators یا عملگرها مانند دست و پای انسان عمل می کنند .

بعضی از سنسورهای اصلی سیستم های EFI عبارتند از :

سنسور اندازه گیری دبی هوا  AFM ( میزان دبی هوا از نظر جرمی و میزان دبی هوا از نظر حجمی )  - سنسور اندازه گیری میزان خلاء ورودی  MAP   - سنسور اندازه گیری میزان دمای هوا  ATS  - سنسور اندازه گیری دمای آب موتور CTS  - سنسور اندازه گیری دور موتور RPM یا Crankshaft Sen.  – سنسور موقعیت دریچه گاز TPS  - سنسور    l - سنسور اندازه گیری دمای سوخت FTS – سنسور اندازه گیری فشار سوخت FPS –  سنسور کنترل وضعیت احتراق درون سیلندرها Knock Sen.  –    سنسور وضعیت سیلندرها Camshaft Sen.  -  سنسور اندازه گیری  CO و  HC   CO-Potentiometer Sen.  

عملگرها Actuators عمده سیستم نیز شامل شیر موتوری Stepper Motor – انژکتورها Injectors  - گرمکن هوا PTC -  شمع ها و . . . می باشند .

سیستم های انژکتوری در طول زمان تغییرات متنوعی کرده اند که در ابتدای دهه 1970 میلادی ابداع شده  از سیستم های مکانیکی انژکتوری آغاز و سپس سیستم های الکترونیکی طراحی شدند  . نیز از سیستم های تک انژکتوری شروع شده و هم اینک  از سیستم های پاشش سوخت مستقیم استفاده می شود .

انواع سیستم های سوخت رسانی انژکتوری به ترتیب ابداع :

1  .  K - JETRONIC    ابزار الکترونیکی وارد کار شد .

2  .  KE - JETRONIC    واحد کنترل الکترونیکی اضافه شد .

3  .  L - JETRONIC

4  .  LH - JETRONIC

5  .  MONO JETRONIC - SPFI

6  .   MULTI JETORONIC - MPFI

7 .  GDI

در اینجا سه مورد آخر که معمولترین سیستم های سوخت رسانی انژکتوری را شامل می  شوند معرفی می کنیم سیستم های پاشش سوخت تکی یا Single Point Fuel Injection  :

در این سیستم ها از یک انژکتور برای تغذیه چهار سیلندر استفاده می شود که این انژکتور سوخت مورد نیاز را در ابتدای منیفولد سوخت می پاشد .از نظر انتقال سوخت نظیر سیستم های کاربراتوری می باشد اما به کمک واحد کنترل الکترونیکی شرایط مناسب تری و مطلوب تری را برای محفظه ی احتراق فراهم میکند .

سیستم های پاشش سوخت چند گانه یا Multi Point Fuel Injection :

که به تعداد سیلندر های خودرو از انژکتور استفاده می شود که این انژکتورها برروی ریل سوخت نصب شده و سوخت مورد نیاز را مستقیم در پشت سوپاپ های سوخت تزریق می کنند .نسبت به سیستم هایSPFI  میزان تغییرات سوخت در آنها پس از پاشش تا زمان احتراق بسیار کمتر است در نتیجه سوخت با شرایط بهتری وارد سیلندر می شود و معمولترین نوع این سیستم ها در حال حاضر به شمار می روند .

سیستم های پاشش مستقیم سوخت یا Gasoline Direct Injection  :

در این روش  برای اینکه حداقل تغییر در شرایط سوخت ورودی به سیلندر روی دهد انژکتورها سوخت مورد نیاز برای احتراق را مستقیم درون محفظه سیلندر تزریق می کنند . که به جز تعدادی خودرو ساز هم اکنون آنچنان مورد استفاده عمومی قرار نگرفته است .

سیستم مورد استفاده در خودروهای داخلی عمدتا از نوعMPFI  می باشد که شامل منیفولد ؛ ریل سوخت و انژکتورها و رگولاتور فشار نصب شده بروی آن ؛ دریچه هوا و قطعات نصب شده بروی آن  ؛ سیستم الکتریکی تعیین زمان احتراق و غیره  . . . و واحد کنترل الکترونیکی ECU  ‌  می باشد .که از این میان تنها انژکتورها ؛ رگولاتور فشار ؛  تعدادی از قطعات دریچه هوا ، ECU   ، سنسورها و قطعات بسیار حساس به دلیل استفاده از تکنولوژی های ویژه از اقلام وارداتی بوده و بصورت انحصاری تنها توسط چند شرکت در جهان طراحی و تولید می شوند و تقریبا بقیه قطعات در داخل کشور ساخته می شوند .

آشنایی با سیستم های CLOSE LOOP  و OPEN LOOP  :

اصولا در هر سیستمی تعدادی ورودی و خروجی وجود دارد . موتور خودرو نیز سیستمی است که بنزین و هوا و . . . ورودی های آن و دود اگزوز و . . .  خروجی آن می باشد . اگر با این دید به یک خودرو کاربراتوری نگاه کنیم موتور خودرو دارای یک سیستم باز است یعنی یک سری ورودی به خودرو داده شده و سیستم نیز بدون هیچ گونه بازنگری از طرف ما یک خروجی ارایه می دهد . این سیستم ها را مدار – باز یا OPEN LOOP  می گویند .

اما در بعضی از خودرو های جدید از خروجی موتور خودرو ( دود اگزوز ) نمونه ( فید بک منفی ) گرفته شده و با کار موتور مقایسه می شود . اگر موتور در استفاده از ورودی های اطلاعاتی خود که همان سنسورها هستند دچار خطایی شده باشد ( خواه از طرف ECU خواه از طرف سنسورها و خواه خطای ناشی از عملکرد نادرست فرمانبر ها به هر دلیل باشد ) سعی می کند تا با تصحیح عملکرد خود بهترین بازده را در خروجی خود به دست دهد . به این سیستم ها مدار – بسته یا CLOSE LOOP  می گویند .فایده عمده سیستم های مدار – بسته در این است که علاوه بر تنظیمی که ECU  به صورت دائم بر کارکرد موتور خودرو دارد در هر لحظه این تنظیم نیز تحت نظارت دوباره بوده و اگر خطای کوچکی نیز اتفاق بیفتد بلافاصله تصحیح می شود .

در موتورهایی که از بنزین سرب دار استفاده می شود سیستم سوخت رسانی از نوع مدار باز یا OPEN LOOP استفاده می شود و در موتورهایی که از بنزین بدون سرب استفاده می شود عموما سیستم سوخت رسانی از نوع مدار بسته یا CLOSE LOOP می باشد .

مزایای استفاده از سیستم های انژکتوری نسبت به سیستم های کاربراتوری :

1 . افزایش راندمان حجمی و حرارتی موتور بدلیل یکنواختی و ترکیب صحیح نسبت هوا و سوخت در حالتهای مختلف کاری موتور

2 . افزایش راندمان حجمی باعث افزایش گشتاور و توان خروجی موتور تا 15 درصد می شود .

3 . نسبت هوا ی ورودی به هر سیلندر بدلیل استفاده تمام سیلندرها از یک حجم ثابت تقریبا برابر است .

4 . بدلیل استفاده از سیتم های اندازه گیری دقیق الکترونیکی برای اندازه گیری دبی هوای ورودی سوخت متناسب با آن تامین شده و در نتیجه مصرف سوخت کاهش می یابد .

5 . در این سیستم ها به علت حذف کاربراتور و پیاله بنزین بخارات حاصل از تیخیر سوخت در پیاله از بین می رود .

6 . کنترل موتور در شرایط مختلف کاری کارکرد موتور مناسب تر و بهتر شده و موتور در هوای سرد سریعتر روشن شده و نیازی بوجود ساسات نمی باشد .

7 . بدلیل یکنواختی ترکیب سوخت و هوا احتراق مناسب تر صورت گرفته و بدلیل افزایش راندمان احتراق موتور نرم تر و بی صدا ترکار می کند .

8 . بدلیل امتزاج مناسب سوخت و هوا راندمان احتراق افزایش یافته و در نتیجه می توان ضریب تراکم حجمی موتور را افزایش داد .

9 . در سیستم های انژکتوری بدلیل اینکه نیازی به گرم کردن منیفولد ورودی نمی باشد در نتیجه دانسیته هوای ورودی بیشتر شده و راندمان حجمی را افزایش می دهد و در نهایتا قدرت خروجی موتور افزایش می یابد .

10 .  با افزایش راندمان احتراق و کنترل پدیده Knock یا Detonation  باعث افزایش عمر موتور خودرو می شود .

11 . مهمترین علت ساخت سیستمهای انژکتوری و مزیت اصلی آن نسبت به موتورهای کاربراتوری کاهش آلودگی ناشی از موتور خودرو می باشد تا قابلیت پوشش دادن استانداردهای عدم آلایندگی را داشته باشند .

معایب سیستم های سوخت رسانی انژکتوری نسبت به کاربراتوری :

1 . گران بودن موتور بدلیل گران بودن قطعات سیستم های انژکتوری

2 . احتیاج بیشتر به تعمیر و نگهداری و خدمات پس از فروش

3 . نیاز به صافی بنزین دقیق تر و بنزین با کیفیت بالاتر

مطابق آنچه در این نوشتار به صورت  ساده و مختصر بیان شد می توان گفت. که هر چه  سیستم سوخت رسانی دقیق تر میزان ورودی ها و خروجی های خود را اندازه گیری نماید و در نتیجه بهتر توانایی کارکرد و تطبیق پذیری با شرایط گوناگون را داشته باشد منجر به بهبود عملکرد و کارایی خودرو می شود . که این موارد در سیستم های تزریق سوخت الکترونیکی بیشتر و بهتر مشهود می باشد .و در دیگراینکه رسیدن به هوای پاک و کاهش آلودگی که امروزه از دغدغه های عمده ی پیش رو در کلان شهر ها است و نیز کاهش مصرف سوخت و در حقیقت استفاده بهینه از منابع محدود انرژی بدون استفاده از این سیستم های جدید سوخت رسانی ( EFI ) تقریبا غیر ممکن است .

 

سیستم انتقال قدرت2

هر خودرو با توجه به ساختار موتور بنزینی و یا دیزلی اش به سیستم انتقال قدرت جهت انتقال قدرت موتور به چرخهای متحرک اش نیاز دارد. با تعویض دنده شما می توانید در حالی که دور موتور پایین تر از خط قرمز است بهترین حالت ممکن راجهت ادامه حرکت و یا توقف کسب کنید.همانطور که در شکل هم می بینید این سیستم بوسیله کلاچ با موتور ارتباط داردودرواقع سرعت محور ورودی آن همان سرعت موتور است، محور خروجی آن هم به میل لنگ متصل است و که نهایتا" باعث انتقال قدرت موتور به چرخهای متحرک خودرو می شود.

 

دیاگرام زیر یک سیستم دو دنده ای را نشان می دهد.

 

 

همانطور که در شکل نیز مشخص است :

.) شافت سبز رنگ بوسیله کلاچ با موتور در ارتباط است .این شافت و چرخدنده سبزرنگ متصل به آن را به عنوان یک واحد در نظر می گیریم.

 

(کلاچ : همانطور که می دانیم کلاچ عضوی است که به شما امکان قطع و وصل ارتباط بین موتور وسیستم انتقال قدرت را می دهد.هنگامی که شما پدال کلاچ را می فشارید،ارتباط بین موتور و سیستم انتقال قطع می شود، با برداشتن پا از روی پدال ارتباط بین شفت ورودی سیستم و موتور مجددا" برقرار شده و شفت ورودی با سرعتی مشابه موتور به چرخش می پردازد.)

.) شافت قرمز و چرخدنده های متصل به آن (layshaft) به عنوان یک واحد تحت تاثیر شافت سبز بوده و همراه با آن خواهند چرخید.

.) شافت زرد به میل لنگ متصل بوده و به همین دلیل تحت تاثیرچرخش چرخها قرار دارد.

.) چرخدنده های آبی روی یاتاقانهایی نصب شده اند و بر روی شافت زرد می چرخند.می دانیم که در صورت حرکت در سراشیبی با وجود خاموش بودن موتور شافت زرد همراه با چرخ های خودرو می چرخد در حالیکه چرخدنده های آبی بی حرکت هستند.

.) کاربرد collar نیز جهت ایجاد اتصال بین شافت زرد و یکی از دو چرخدنده آبی است . با لغزش به راست و یا چپ دندانه های آن(dog teeth) می توانند با دندانه های یکی از دو شافت آبی در گیر شوند.برای مثال در تصویر زیر که مربوط به انتخاب دنده 1 استcollar به چرخدنده سمت راستی متصل شده است.

سیستم اعلام حریقی که با پاره شدن سیم هم کار می کند

Supervision

Fire alarm systems save lives and protect property. Fire alarm systems also break down because they're electrical. 

Class A or Class B wiring loops help the fire alarm panel to find these breakdowns (faults) before a fire, while there is time for repairs.
 


Class B Loops

Diagram showing the schematic for Class B Wiring
Normal Class B wiring - All devices are supervised and working.
In conventional Class B Loops , all devices are daisy-chained together. By watching a small electrical current passing through the wires, the panel supervises them, and to limit this supervising current, at the end of the daisy-chain is an end-of-line resistor. The panel constantly watches for this current. 

Diagram showing the schematic for Class B Wiring
Open Fault in the Class B wiring. Supervision tells the panel that the wiring does not go through, but also the devices further from the panel don't work.
If the supervising current stops flowing, the panel assumes a wire is broken (an open fault), and displays a trouble. When a wire breaks in Class B, the devices closest to the panel will still work, but because of the wire break, the devices further from the panel are cut off. 

Class A Loops

Diagram showing the schematic for Class B Wiring
Normal Class A wiring - All devices are supervised and working.
Under normal conditions, Class A Loops are similar to Class B Loops, but with an important difference. 
Diagram showing the schematic for Class B Wiring
Class A wiring takes error detection further than Class B. If a wire breaks, the panel uses a redundant wire path to maintain communication with devices beyond the break. Here even though a wire is broken, all devices work.
To keep more devices working, Class A uses a second path from the fire alarm panel; a redundant wire loop goes around the broken wire. A fire can still be detected, because, using this redundant path, most, if not all, devices on the loop remain connected to the panel. 

Basically, when the fire alarm panel detects an open wire in the Class A Loop, it automatically switches tousing two separate un-supervised Class B loops. The first one is the original Class A loop, and second one back-feeds on the separate pair of wires to make the second Class B loop. 

Most of the devices on the original Class A loop will be on either the first or the second Class B loop. 

Separation on Class A Wiring Routes

True Class A wiring schemes, though, make sure to protect this redundant loop path by routing it through the building on a separate route. 

The concern here is that whatever breaks a wire in the first loop might break all the wires in the same bundle. An example: A forklift tears through all the wires in a bundle at once. If both wiring routes use the same wire bundle, and the whole bundle of wires is broken, and all the devices beyond the break will not communicate with the panel. 

In that case, Class A wiring will not be any better than Class B. 

The NFPA Code does allow for some exceptions, but mostly the code says the outgoing wiring path and the incoming wiring path should be separated by some distance. 

Resetting Class A Troubles

Most fire alarm panels automatically restore trouble messages when the trouble is repaired. However, because the Class A Loop isn't supervised the same way as Class B Loops, the fire alarm panel can't detect corrections. 

In these cases, after correcting the open fault, resetting the panel will clear the trouble message. 

Bottom Line for Class A

Class A Loop wiring uses both a primary wire path, and a redundant secondary wire path. 

When a wire breaks, by using both paths, devices are still able to communicate with the fire panel

http://www.douglaskrantz.com/BlogClassAWiring.html

سیستمهای تبرید-ساختمان یخچال

 

سیستمهای تبرید-ساختمان یخچال

 

اجزای تشکیل دهنده یخچال را به دو دسته مکانیکی و الکتریکی تقسیم می‌کنند:

 

 

اجزای مکانیکی یخچال

 

 

کمپرسور

کار کمپرسور ، ایجاد فشار و مکش جهت به حرکت در آوردن گاز در سیستم است. در داخل کمپرسور یک موتور الکتریکی تک‌ فاز و یک مجموعه مکانیکی شامل سیستم سوپاپ و پیستون و میل لنگ قرار دارد. با رسیدن برق به موتور کمپرسور و به چرخش در‌آمدن روتور آن توسط میل‌لنگ ، پیستون به حرکت در آمده و سوپاپ‌های مختلف باز و بسته می شوند. در نتیجه گاز به گردش در می‌آید. کمپرسور تنها از طریق سرلوله به بیرون ارتباط دارد.

 

صرف‌نظر از لوله کور که جز در موارد تخلیه یا شارژ گاز مورد استفاده قرار نمی‌گیرد، دو لوله دیگر از اهمیت بسزایی برخور دارند. حرکت پیستون داخل سیلندر کمپرسور مرتبا گاز را از لوله برگشت مکیده و با فشار وارد لوله رفت می‌کند. به این ترتیب گاز سرما ساز مدام در حال حرکت است و عمل سرماسازی را انجام می‌دهد.

 

رادیاتور خنک کننده ( کندانسور)

 

گاز سرد کننده وقتی در داخل کمپرسور تحت فشار قرار گیرد، حرارت آن افزایش می‌یابد. حال اگر به طریقی این گرما سلب نشود و یا تعدیل نگردد، عمل سرما‌سازی مختل می‌شود. از این رو در یخچال ، گاز تحت فشار و گرم شده از کمپرسور وارد لوله‌های مارپیچ مانند که در تماس مستقیم هوا است (جای این لوله ها در یخچال های خانگی پشت کابینت اصلی یخچال است) می‌شوند. دمای گاز در اثر ارتباط هوا کاهش یافته و عمل سرماسازی در سیستم به سهولت انجام می‌شود. به منظور حفاظت لوله‌های فلزی کندانسور در برخورد با اشیا و اجسام خارجی ، مفتولی در اطراف کندانسور تعبیه می‌کنند.

 

فیلتر ( درایر)

 

گاز پس از آنکه در داخل کمپرسور تحت فشار قرار گرفت، به منظور کاستن از حرارتش راهی کندانسور می‌شود. از آنجا که ممکن است در عبور از این مسیر جرم هایی را نیز حمل کند و یا دارای رطوبت باشد، لازم است قبل از سرماسازی کاملا پاک و خشک شود. بنابراین پس از رادیاتور ، از فیلتر عبور می‌کند. فیلتر دارای دو لوله ارتباطی است.

 

یکی از لوله‌ها سطح مقطع بزرگتری دارد که در واقع ورودی فیلتر است و به خروجی کندانسور وصل می‌شود. در ورودی فیلتر شبکه‌های توری ریزی برای گرفتن جرمهای زائد قرار گرفته است. خروجی فیلتر که سطح مقطع کمتری دارد به لوله مویین متصل می‌شود، تا گاز سرد کننده تحت فشار زیاد قرار گیرد. در این خروجی نیز شبکه‌های توری با سوراخهای بسیار ریز قرار گرفته است. در فضای میانی فیلتر مواد شیمیایی به نام سیلیکات یا سیلیکاژل قرار دارد، که خاصیت و کار آن جذب رطوبت گاز عبوری است.

 

لوله مویین ( کاپیلاری تیوب )

 

لوله مویین ، لوله‌ای با قطر بسیار کم است که به علت باریک بودن به این نام خواننده می‌شود و نقش مهمی در تولید سرما دارد. محل نصب لوله مویین بین خروجی فیلتر وورودی با اواپراتور (یخ ساز) است. گاز سرد کننده که توسط کمپرسور تحت فشار قرار گرفته با عبور از مسیر کندانسور و فیلتر وارد لوله مویین می‌شود. در لوله مویین فشار محیط درون آن به حد قابل توجهی افزایش می‌یابد. لذا گاز سرد کننده که تحت فشار زیاد به مایع تبدیل شده است، با عبور از لوله مویین وقتی که وارد اپراتور می‌‌‌‌شود، چون ناگهان با حجم زیادی مواجه می‌گردد، تبدیل به گاز شده و ایجاد سرما می‌نماید.

 

اواپراتور ( محفظه یخ ساز)

 

اواپراتور به قسمتی گفته می‌شود که بوسیله تبخیر یک ماده خنک‌کننده سبب تولید سرما شده و در صورت قرار گرفتن در یک ناحیه باعث سرد شدن آن ناحیه یا محفظه می‌شود. در وسایل سردکننده همان محفظه سردکننده را به نام اواپراتور می‌شناسند. برای انتقال مطلوب و سریع سرما جنس اواپراتور را از آلومینیم انتخاب می‌کنند. لوله ورودی اپراتور بسیار باریک است که در واقع همان نقطه اتصال آن به لوله مویین است، و لوله خروجی آن سطح مقطع بیشتری دارد و به لوله برگشت کمپرسور می‌رسد.

 

 

موتور الکتریکی

 

همان گونه که قبلا در مبحث کمپرسور خواندید موتور الکتریکی با یک مجموعه مکانیکی کمپرسور یخچال را تشکیل می دهند.موتور الکتریکی از نوع آسنکدون بوده و دارای دو قطب و قسمتهای عمده آن عبارتند از :

 

سیم پیچ اصلی

سیم پیچ فرعی

هسته استاتور

رتور

برای آنکه در موتور یخچال مقاومت اهمی سیم پیچ راه انداز از راکتاس القایی آن زیادتر شود و گشتاور راه اندازی موتور افزایش یابد قسمتی از سیم پیچ استارت را بصورت بیفیلار اجرا می کنند لذا با اهم گیری بین سرهای مشترک و هر کدام از دو سر دیگر می‌توان استارت یا اصلی بودن سیم پیچ را تشخیص داد. سرهای الکتروموتور روی کمپرسور درون ترمینال بسته می شود که اصولا بصورت مثلثی است.

 

طرز کار موتور الکتریکی

 

وقتی از طریق ترموستات فرمان به موتور می رسد.جریان الکتریکی از رله استارت و سیم پیچ اصلی عبور می کند و چون سیم پیچی راه انداز در مدار نیست جریانی حدود 2 برابر جریان نامی از سیم پیچ اصل عبور نموده و نیروی الکتریکی رله استارت که با مجذور جریان عبوری از آن متناسب است افزایش می یابد و هسته رله را به سمت بالا هدایت می‌کند و سیم پیچی راه انداز توسط تیغه مربوطه که به هسته متحرک رله استارت متصل است، جریان دار شده و موتور شروع به حرکت نماید.

 

با حرکت الکتروموتور جریان الکتریکی در سیم پیچی اصل نرمال شده و نیروی رله استارت کاهش یافته و هسته آن در اثر نیروی وزن هسته پایین می‌آید و تیغه مربوط به سیم پیچی راه انداز را قطع می‌کند و موتور با سیم پیچی اصلی بکار خود ادامه می‌دهد.حرکت رتور موتور سبب تحت فشار قرار دادن گاز از یک سمت و مکش از سمت دیگر می‌شود تا زمانی که اواپراتور (یخ ساز) خنک شده و ترموستات جریان الکتروموتور را قطع می نماید.

 

ترموستات

 

ترموستات یک کلید اتوماتیک تنظیم دما است که داخل یخچال قرار دارد. اجزای اصل ترموسات عبارتند از:

 

بدنه فلزی

فانوسک

کنتاکت های اتصال

لوله بلو که محتوای گاز حساس است.

لوله مویین

فنر و اهرم ها

پیچ تنظیم

ولوم

صفحه مدرج :که درجات مختلف روی آن نوشته شده است.

معمولا لوله بلویی ترموستات را به قسمت تحتانی و یا سقف اواپراتور متصل می سازد. با گرم شدن هوای داخل یخچال و یا افزایش درجه حرارت اواپراتور گاز داخل لوله بلو منبسط می‌شود. گاز منبسط شده به فانوسک ترموستات فشار آورده و اهرم مربوط به وصل کنتاکت‌های اتصال را جابجا کرده باعث اتصال کنتاکت به یکدیگر می‌شود و لذا ولتاژ شبکه به موتور اعمال می‌شود و موتور به کار می‌افتد. با به کار افتادن موتور اواپراتور خنک شده گاز داخل بالن یا مخزن لوله بلو و لوله مویین منقبض شده و فشار از روی فانوسک ترموستات برداشته می‌شود با جمع شدن فانوسک اهرم کنتاکتها به عقب بر می‌گردد و اتصال آنها بصورت باز درمی‌آید که باعث توقف کار موتور خواهد شد.

 

رله راه انداز (رله استارت)

 

رله استارت بر سه نوع جریانی ولتاژی و حرارتی می باشد که بیشتر رله نوع جریانی و یا حرارتی دو منظوره (استارت و بار منفی) به کار برده می‌شود.

 

رله بار زیاد (بی متال یا اورلود)

 

هرگاه در کار موتور مشکل بوجود می‌آید مانند آسیب دیدن سیم پیچ‌های اصلی با کمکی و یا مسدود شدن مسیر گردش گاز و یا وضعیت بودن ولتاژ و ... جریان دریافتی موتور افزایش یافته و موتور داغ می کند که ممکن است بسوزد. از اینرو استفاده از رله بار زیاد ضروری است. رله بار زیاد یک فیوز حرارتی است که بر روی کمپرسور نصب می‌شود. کار آن به این شرح است که در اثر گرمای جدار خارجی کمپرسور و یا در اثر عبور جریان الکتریکی موتور از سیم هیتر داخل رله گرم شده و با تحریک صفحه حساس طول آن را افزایش می دهد و سبب جدا شدن کنتاکتهای رله می گردد.

 

جعبه تقسیم و سیم رابط

 

جعبه تقسیم یا ترمینال محل ورود کابل اصلی یخچال و تقسیم سیمهای خروجی است. سیم رابط یخچال باید ازنوع کابلی باشد و جهت ارت کردن حتما نوع سه سیمه آن انتخاب شود.همچنین کابل باید قابلیت انعطاف باشد تا هنگام جابجایی مشکل برای آن ایجاد نشود. سطح مقطع سیمهای کابلی باید باشد.

 

لامپ یخچال

 

روشن شدن لامپ داخل یخچال به هنگام باز کردن در آن است. توان لامپ یخچال بین 14 تا 40 وات است. این لامپ دارای سرپیچ محکمی است.

 

شستی معکوس لامپ

 

شستی لامپ یخچال مانند شستی زنگ اخبار است. با این تفاوت که معکوس عمل می‌کند یعنی وقتی که در یخچال باز می‌شود، کلید آزاد است و لامپ روشن می شود. لامپ خاموش می‌شود. بدین جهت به آن شستی معکوس نیز گفته می‌شود.

 

درباره سیستم های اعلام حریق

امروزه از سیستم ها ی اعلام حریق به طور گسترده در ساختمان ها و اماکن مسکونی و صنعتی استفاده می شود تا خسارتهای ناشی از حریق را به حداقل برسانند و همچنین برای اطلاع دادن به ساکنین ساختمان در مواقع بروز حریق از این سیستم ها استفاده می شود تا حدالامکان از تلفات جانی جلوگیری شود.

برای تشخیص حریق از اثرات سه گانه آن یعنی دود و حرارت و شعله استفاده می شود . به طور کلی سیستم های اعلام حریق در دو نوع عادی و هوشمند ساخته شده اند.

درسیستمهای عادی مکانی را که از نظر حریق می خواهیم حفاظت کنیم به مناطق مشخص تقسیم میکنیم تا در صورت بروزحریق بتوان محل حریق را سریعترو راحت تر تشخیص داد . به هر کدام از این مناطق یک زون ( Zone ) گفته می شود .

این عمل در سیستم ها ی هوشمند نیز انجام می پذیرد ولی مزیتی که این سیستم ها نسبت به سیستم ها ی عادی دارند این است که این سیستم ها دارای اجزای قابل آدرس دهی هستند و علاوه براینکه می توان زونی را که در آن حریق اتفاق افتاده است تشخیص داد بلکه می توان دقیقا عنصری را که حریق را تشخیص داده معین کرد و محل دقیق حریق را مشخص نمود و خبردهنده ها یی را که مربوط به آن محل می باشد فعال نمود .

اجزای سیستم اعلام حریق به سه قسمت اصلی تقسیم می شوند :

· تجهیزات تشخیص حریق ( دتکتورها )

· تجهیزات اعلام حریق ( فلاشرها ، آژیرها و … )

· مرکز کنترل یا پانل مرکزی که وظیفه ارتباط بین دتکتورها و وسایل اعلام حریق را به عهده دارد.

تجهیزات جانبی دیگری نیز برای تکمیل و قدرتمند نمودن سیستم اعلام حریق به کار می روند .

تجهیزات تشخیص حریق ( دتکتورها ) »

دتکتورها وسایل الکترونیکی هستند که در شکل ها و طرح ها ی مختلف و معمولا به رنگ سفید توسط کارخانه های سازنده ارائه می شوند و در محلهای مناسب ساختمان مانند آشپزخانه – موتورخانه – اتاق بایگانی – راهروها – اتاق ها منزل – اتاق ها ی کنفرانس به صورت سقفی یا دیواری روی پایه های مخصوص نصب می شوند و وظیفه آنها تشخیص حریق و اعلام آن به مرکز کنترل میباشد . تغذیه دتکتورها معمولا با ولتاژ ۲۴ ولت DC صورت می گیرد ولی دتکتورها یی وجود دارند که از ولتاژ های ۱۲ و ۴۸ ولت DC و یا AC 220 ولت تغذیه می شوند.

جریان عبوری از آن ها در حالت عادی چند ده میلی آمپر است و در مواقع بروز حریق افزایش می یابد. بسته به اینکه دتکتورها از کدام اثر آتش برای تشخیص استفاده می کند در انواع گوناگونی به صورت زیر ساخته می شوند :

۱- دتکتور دودی

۲ – دتکتور حرارتی

۳ – دتکتور شعله ای تجهیزات اعلام کننده حریق »

برای آگاه کردن ساکنین ساختمان از بروز حریق از وسایل سمعی و بصری خاص سیستم های اعلام حریق استفاده می شوند که به سه گروه تقسیم می گردند:

۱- آژیر ( Sounder ) یا زنگ ( Bell )

2- چراغ ها ی نشانگر ( (Flasher3-شستی ها ی اعلام حریق ( Manual Call Point ) ( MCP )

نصب و استقرار تجهیزات سیستم اعلام حریق طبق استاندارد BS 5839 و کابل کشی طبق استاندارد BS 6207 انجام می گیرد . به طور کلی می توان سیم ها ی مدار اعلام حریق را به دو گروه تقسیم کرد و با توجه به خصوصیات هر گروه کابل مناسب باآن را به کار برد :

گروه۱ :کابلهایی که بعد ازآشکارشدن حریق استفاده نمی شود مانندکابل ها ی دتکتورها وشستی ها

گروه ۲ : کابلهایی که بعد ازکشف حریق استفاده میشوند مانندکابلهای منبع تغذیه وآژیرها و چراغها در حالت کلی می توان برای هر دو گروه کابل ۵/۱ میلی متر مربع با روپوش و عایق پروتودور به کار برد ولی در مکان ها ییکه امکان ضربه یا ساییدگی و جویده شدن توسط حیوانات وجود دارد باید کابل ها را حفاظت مکانیکی کرد. می توان در مورد سیم ها ی آژیرها و چراغ ها برای حفاظت آنها را داخل دیوار زیر حداقل ۱۲ میلی متر گچ به صورت توکار گذاشت . کابلها ی سیستم اعلام حریق باید جدا از سایر کابل ها سیم کشی شوند .

تست کابل ها توسط اهم متر انجام می شود و در صورت استفاده از مگا اهم سنج باید تمام تجهیزات اعم از دتکتور – آژیر – پانل کنترل و … را از مدار باز کرد تا ولتاژ تست بالابه آنها آسیب نرساند . هنگام کابل کشی نباید از مسیر زون ها انشعاب گرفت . همچنین نباید از آژیر ها هم انشعاب گرفت .

کابل کشی سیستم ها ی عادی به صورت رادیال یا خطی و کابل کشی سیستم ها ی هوشمند به صورت حلقوی انجام می گیرد . در انتهای مسیر زون ها همیشه یک مقاومت موازی با خط که مقدارآن معمولا ۷/۴ یا ۸/۶ کیلو اهم است متصل می کنند یا از واحد انتهای خط AEOL استفاده می نمایند .

سیستم مدیریت ساختمان (bms) چیست؟

سیستم مدیریت هوشمند ساختمان با بکارگیری از آخرین تکنولوژی ها در صدد آن است که شرایطی ایده آل ، همراه با مصرف بهینه انرژی در ساختمان ها پدید آورد.
این سیستم ها ضمن کنترل بخشهای مختلف ساختمان و ایجاد شرایط محیطی مناسب با ارائه سرویس های همزمان ، سبب بهینه سازی مصرف انرژی ، سطح کارایی و بهره وری سیستم ها و امکانات موجود در ساختمان می شود. کنترل و دسترسی به سیستم با استفاده از نرم افزارهای مربوطه از هر نقطه در داخل ساختمان و خارج از آن از طریق اینترنت مقدور می باشد.
هم اکنون نیمی از ساختمانهای بالای 10000 متر مربع در سطح کشور آمریکا که در انها از انواع سیستمهای BMS استفاده شده است، چیزی بالغ بر 10 درصد کل انرژی مصرفی در ساختمانهای بالای 10000 متر مربع را صرفه جویی می کنند. در صورتیکه که استانداردهای بین المللی در کلیه پروسه های نیازسنجی، طراحی، نظارت و اجرای سیستم رعایت شده و در طول بهره برداری از سیستم آموزشهای بومی لازم در اختیار بهره برداران و گروه نت ساختمان قرار گیرد، می توان به میزان مورد انتظار باعث ایجاد کاهش در مصرف انرژی گردید.
مزایای بهره گیری از BMS
هدف اصلی به کارگیری BMS در ساختمانها بهره گیری از مزایای اقتصادی و کاهش مصرف انرژی و ایجاد فضای امن و آرام در آنهاست. عموم مزایا و نتایج بهره برداری از BMS عبارتند از:
ایجاد محیطی مطلوب برای افراد حاضر در ساختمان.
استفاده بهینه از تجهیزات و افزایش عمر مفید آنها .
ارائه سیستم کنترلی با قابلیت برنامه ریزی زمانی عملکرد.
کاهش چشمگیر هزینه های مربوط به نگهداری و تعمیرات.
بهینه سازی و صرفه جویی در مصرف انرژی.
عدم نیاز به پیمانکار دائمی ساختمان.
امکان مانیتورینگ و کنترل تمامی نقاط تحت کنترل از طریق یک PC ، موبایل یا اینترنت
با توجه به یکپارچه سازی مدیریت تأسیسات و سیستمهای مختلف در ساختمان ، تمام تجهیزات بصورت هماهنگ کارکرده و امکان تداخل و بروز مشکلات ناشی از عدم هماهنگی از بین می رود.
امکان گرفتن گزارش های آماری از تمامی تجهیزات و عملکرد آنها به منظور بهینه سازی مصرف و عملکرد.
اجزاء و مشخصات راه حلهای BMSطراحان سیستمهای مدیریت ساختمان باید تصمیم بگیرند که :
استراتژی مناسب برای پیاده سازی سیستم کدام است؟
چه نوع سیستم و با چه مشخصاتی را انتخاب کنند؟
از چه پروتکل ارتباطی برای ارتباطات بهره بگیرند؟
و اینکه آیا اینترفیس WEB را به سیستم اضافه کنند یا نه؟
استراتژی های مناسب سیستم BMS در کاهش مصرف انرژی:معروفترین روشهای به کار گرفته شده توسط طراحان BMS عبارتند از:
خاموش و روشن کردن تجهیزات بر اساس جداول زمانبندی کارکرد،
Lock out یا بهره برداری از تجهیزات در صورت نیاز و ضرورت.
بهره برداری از می نیمم ظرفیت مجاز در بهره برداری از تجهیزات (Resets).
محدود کردن تقاضا یا Demand Limiting که موجب قطع برق تجهیزات در صورت بارگذاری بیش از حدود تعیین شده، خواهد شد.
مونیتورینگ وضعیت تجهیزات توسط اپراتورهای آموزش دیده و بهره برداری از داده ها در رفع مشکلات تجهیزات و بررسی عمکلرد موثر آنها.
انواع سیستمهای کنترل:سیستمهای کنترل ساختمان (BAS) عموماً در دو دسته بندی قرار میگیرند:
کنترل مستقیم دیجیتالی (Direct Digital Controls) یا DDC که سیگنالهای الکترونیکی را از طریق کامپیوتر دریافت کرده و با پردازش در کنترلرها برای کنترل مستقیم سیستمها مورد استفاده قرار می دهند. پیش از این و در ساختمانهای قدیمی به جای استفاده از سیگنالها و تغذیه الکترونیکی، دمپرها و actuator ها را با هوای فشرده و روش پنوماتیکی کنترل می کردند.
کنترل Stand-alone: که در آن هر سیستم به طور مجزا و بدون اتصال به BAS دارای کنترلرهایی است که عموماً از پیچیدگیهای زیادی برخوردارند و امکان اتصال آنها از طریق پروتکلهای استاندارد ارسال داده به مرکز کنترل یا سیستم BMS وجود ندارد. نظیر سیستمهای کنترل پکیجهای چیلر.

سیستمهای کنترل DDC مزایای زیادی نسبت به کنترل Stand-alone دارند که از آن جمله می توان به تولید فیدبکهای بیشتر، امکان مونیتورینگ و ایجاد سیستم کنترل متمرکز و یکپارچه در سیستمهای کنترل DDC اشاره نمود.
استانداردها و پروتکلهای ارتباطی:دو نوع سیستم ارتباطی اصلی برای سیستمهای DDC وجود دارد:
پروتکلهای اختصاصی، که در صورت استفاده از آنها تجهیزات در یک بخش خاص سیستم می توانند تنها با تجهیزات دیگری از همان برند اتصال پیدا کنند و امکان برقراری ارتباط ساده و مستقیم با تجهیزات تهیه شده از سایر برندها را ندارند. البته چنین سیستمهای به سرعت در حال حذف شدن از بازار تجهیزات BMS هستند چرا که دست کاربران را برای توسعه سیستم می بندند. اما مزیت این سیستم در بحث پشتیبانی است. چراکه تنها یک کارخانه سازنده و یک برند مسوول عملکردها و خطاهای سیستم است.
پروتکلهای باز، که در آنها از پروتکلهای ارتباطی شناخته شده استاندارد که عموماً در اسناد علمی منتشر شده اند ، استفاده می شود که برای تمام تولیدکنندگان باز است. ASHRAE که نام انجمن مهندسی سیستمهای گرمایش و سرمایش آمریکا است در سال 1995 استانداردی باز با نام BACnet را منتشر کرد که مبنای طراحیهای اکثر تولیدکنندگان سیستمهای BAS قرار گرفت. استاندارد باز دیگری از این نوع با نام Lonworks هم وجود دارد که البته با استقبال چندانی روبرو نشده است.
به دلایل بسیاری استفاده از پروتکل باز و استاندارد BACnet دارای مزیت است از آن جمله می توان به اطمینان از عملکرد تجهیزات برندهای مختلف در کنار هم بر اساس استاندارد BACnet، ایجاد فضای رقابتی برای افزایش کیفیت و قابلیت های تجهیزات BMS و افزایش مسوولیت تولیدکنندگان در قبال اشکالات احتمالی تجهیزات و پشتیبانی فنی از آنها را نام برد.
ضمناً برای ایجاد سازگاری میان نرم افزارهای مختلف نمایشی، مدیریت و کنترل در سیستمهای BAS بنیاد OPC استانداردی را با همین نام منتشر نموده است.
واسط کاربر وب (WEB Interface Browser)جستجوگر وب به عنوان بخشی از نرم افزار BMS به کاربر اجازه می دهد تا به منابع اطلاعاتی دسترسی پیدا کرده و آنها را از طریق اینترنت ببیند. این امر قابلیتهای کاربران را برای مدیریت تجهیزات روی شبکه BAS ساختمان، به شدت افزایش داده است. شبکه کردن سیستم کنترل تجهیزات همچنین می تواند امکان ارتباط با سایر نرم افزارهای کامپیوتری را فراهم آورد. مثلاٌ می توان نرم افزار BMS را به سیستمهای Online هواشناسی مرتبط نمود. با استفاده از این ابزار کلیه سیستمهای تهویه، امنیت و روشنایی ساختمانها می تواند توسط هر فرد یا گروه یا سازمانی از هر نقطه از دنیا مونیتور و یا کنترل شود. البته دستیابی به این اطلاعات باید در چهارچوبهای شناخته شده امنیت شبکه های کامپیوتری محدود شوند. یکی از مزیتهای اصلی واسط کاربر وب این است که باعث حذف کلیه واسطهای کاربر سنتی برای مونیتور وضعیت تجهیزات میشود و کلیه تجهیزات از طریق واسط وب قابل دیدن و ارتباط با یکدیگر می شوند. دیگر اینکه کلیه امکانات شبکه جهانی اینترنت برای ساختن یک سیستم BMS موثر و مفید قابل به کارگیری است.
معماری سیستم [BMS]سیستم معمولاً در سه سطح دسته بندی می شود. در سطح صفر وسائل و تجهیزات، حسگرها و اجزاء نهایی کنترل قرار می گیرند. سیستمهای M&E (ایستگاههای مهندسی و اپراتوری سیستم) در این بخش قرار دارند و از طریق ورودی و خروجیهایی به کنترلرهای یکپارچه منتقل می شوند. این انتقال ممکن است به طور مستقیم و یا از طریق تابلوهای طراحی شده صورت گیرد.
اجزاء پس از خاموش شدن سیستم وجود داشته و شامل سیستمهای I/O ، کنترلرها و نرم افزارهای ارتباطی با سطح 2 می باشد و تمامی الگوریتمهای کنترلی و منطقی در این سطح انجام می شود.
در سطح 2 یا سطح کنترل نظارتی سطحی است که در آن ابزارهای نظارتی و مدیریت اطلاعات شامل HMI ها، سرورها، تجهیزات ذخیره سازی و ایستگاههای کاری اپراتورها و مهندسان که باید با سیستم BMS در ارتباط باشند، قرار دارد. ارتباط بین سطح یک و دو از طریق پروتکلهای استاندارد صنعتی انجام می پذیرد.
نرم افزار کنترلی سیستمهای BMS دارای قابلیتهای بسیاری هستند. این نرم افزارها در سطح 3 قرار گرفته و روی سرورهای مناسب نصب می شوند و معمولاً دارای حداقل شرایط زیر هستند:
دارای محیط گرافیکی مناسب و ساده برای کاربر عادی.
دارای مجموعه Library) ) از انواع راه حل ها و برنامه ها جهت آسانی طراحی و توسعه سیستم در آینده .
دارای امکانات PM (سرویس و نگهداری) جهت راهبری سیستم در آینده بدون نیاز به تهیه نرم افزار PM مجزا.
امکان تعریف طول و عرض جغرافیایی جهت تنظیم اتوماتیک شرایط طلوع و غروب خورشید و کنترل مصرف انرژی.
امکان تعریف لایه های امنیتی دسترس به برنامه توسط کاربران متفاوت.
امکان تعریف لایه های امنیتی برای کاربران زیر سیستم های متفاوت از قبیل Access ، HVAC ، Lighting و ....
امکان ذخیره سازی اطلاعات نرم افزار در بانکهای اطلاعاتی SQL قابل کنترل توسط Microsoft Windows .
امکان تهیه ، تنظیم و مقایسه نمودارهای مختلف عملیاتی از جمله نمودار مصرف برق و ... در بازه های مختلف زمانی(Trends).
ارتباط ساده نرم افزار گرافیکی و I/O های سیستم.
امکان ذخیره سازی اطلاعات مربوط به خطاها و دیگر گزارشات تا مدتها قبل.
امکان ردیابی و پیگیری درخت و توپولوژی شبکه BACnet توسط نرم افزار بطور Online بطوریکه در صورت قطعی عضوی از شبکه، سیستم بطور اتوماتیک آلارم میدهد .
وظایف BMS در ساختمان هم اکنون سیستمهای یکپارچه BMS در ساختمانها، آسمانخراشها و برجهای تجاری- اداری و مسکونی و یا مجتمعهای صنعتی کنترل بخشهای مختلفی را به عهده دارند:
سیستمهای روشنایی.
فنها و تأسیسات سرمایش و گرمایش.
سیستمهای کنترل تردد.
سیستمهای نظارت تصویری.
تجهیزات اندازه گیری و میترها.
سیستمهای اعلام حریق.
سیستمهای امنیتی و حفاظت پیرامونی.
آسانسورها.
به طور معمول از BMS در اکثر ساختمانها برای کنترل تأسیسات گرمایش و سرمایش، روشنایی و کنترل تردد بهره برداری می شود. اما این سیستمها به دلیل استفاده از پروتکلهای استاندارد و معماری مبتنی بر استانداردهای شناخته شده، امکان لینک شدن با کلیه سیستمهای شمرده شده در بالا و شکل دهی یک مدل کنترل مجتمع برای همه اجزاء قابل کنترل در ساختمان را ایجاد می نماید. در شکل زیر شمای کاملی از یک سیستم به هم پیوسته BMS مبتنی بر وب را مشاهده می کنید. اجرای چنین سیستم جامعی در یک ساختمان واقعاٌ آن را به یک سازه امن و هوشمند تبدیل خواهد کرد.
تحقیقات نشان می دهد که به کارگیری BMS در بهترین حالت باعث کاهش 30 درصدی در مصرف انرژی در ساختمانها می شود. اما استفاده از سیستمهای یکپارچه نسبت به سیستمهای مجزا 15 درصد قابلیت بالاتر ایجاد می کند.